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Diverse ORNL Team Working on This Project

e Engine system management, experiment design, data

collection and analysis
— Shean Huff

— Brian West

— Jim Parks

— Matt Swartz

e Analytical chemistry
— John Storey
— Sam Lewis
— Bill Partridge

e Bench reactors
— Todd Toops
— Jae-Soon Choi

e Modeling (CLEERS interaction)
— Stuart Daw
— Kalyan Chakravarthy
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Lean NOx Trap Combines 3-way Catalyst Function with NOXx
Storage Material(s)

e Conventional TWC oxidizes HC and CO, 100
reduces NOx

— Requires tight control of AFR =
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« LNT a.k.a. DNT, NOx Adsorber, NAC,NOx & ¥

Storage and Reduction (NSR) Catalyst
— Stores NOx during lean operation

— Uses alkali and/or alkaline-earth metals for
storage

— Pt group metals for oxidation/reduction 0 - L&
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e Periodic rich regeneration releases and

reduces NOXx

>85% of time <15% of time
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Several means of introducing reductant to LNT are being
researched

e Engine or in-cylinder regeneration

— Use engine controls (throttle, EGR, injection), to achieve rich
combustion

e In-pipe injection
— Introduce excess fuel downstream of engine
— Can use two-pass exhaust system with exhaust valves

— Fuel cracking accomplished in LNT or upstream catalysts

e Fuel reformers

— Plasma or catalyst-based systems to feed reductant to LNT
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Common Rail Engine with full-pass control used for LNT

regeneration experiments

Electronic
Throttle

Turbo Waste Gate
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Objective

e Minimize fuel penalty while
meeting emissions targets

Approach

e Characterize reductants
generated by the engine

— Select strategies with most
distinct reductant pools

e Characterize candidate LNTs

— Correlate various reductants

In-Cylinder Fuel Delivery with catalyst performance

* Number of Injections
* Duration
eTiming -~ -~ - -~ =

FueI Ra|I Pressure
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Approach Summary: vary strategy or fuel to change

reductant chemistry
Reductant Species (peak concentrations) through the engine/catalyst system

CO: 0-0.5%

H2 H2
0.6-1.5% 0.5-1.4%

Hydrocarbons Hydrocarbons
0.5 1% 2200-8000 ppmC

500-3000 ppmC

methane ethane ethyne propene
butene formaldehyde acetaldehyde benzaldehyde
Other species measured: toluene benzene napthalene
Nitro-organics tridecane indene styrene
Ammonia benzofuran  phenol methyl napthalene
N20 acenathalene diphenylethene ...many others

H2 and O2 transients measured using SpaciMS (SAE 2000-01-2952)
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Multiple analytical tools and techniques used to understand
catalyst characteristics and performance

Conventional Five Gas
Analyzers

" N Celesco Opacity Meter
H2 Capillary Inlet MS (SpaciMS)

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY 7 UT-BATTELLE




Experimental setup allows full exhaust species
characterization throughout the catalyst system

Bench #2, FTIR, GC/MS
Engine Out Bench, ?

FTIR, GC/MS

UEGO1 UEGO2 UEGO3
e oo
Turbo NOXx NOx
Sensor #1 Sensor #2
Spaci-MS Spaci-MS Spaci-MS Spaci-MS
probe #1 probe #2 probes #3,4,5  probe #6
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EGR used to induce rich LTC for LNT regeneration
e Under moderate road load conditions (1500RPM/5bar BMEP), EGR
drives the system rich

— Combustion can be tuned to enter LTC (i.e., low NOx/low PM)

e Regeneration consists of . ..
— transitioning to 50%-55% EGR rate
— disabling pilot injection and advancing the main injection
— anominal increase in fuel delivered to induce a rapid lean/rich transition

e Regeneration concluded by simultaneously closing the EGR valve
and returning to normal injection

Two throttled/non-EGR strategies for comparison

pilot* % main pilot* % main
“Delayed and 5 Time “Post 80
Extended Main” y R kl post Injection”
(DEM) (P80)
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Rich LTC regeneration maintains low NOx/low PM

(3}

Increasing EGR
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Rich LTC Regeneration
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Real-time data highlights approach of strategies
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Close look at LTC-based regeneration shows traits of LTC
(low-NOx, low PM)
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e Intake airflow decreased via EGR in lieu of throttle

e PM “hump” discernible as EGR increases (%)

e Small PM increase with 15% increase in main fuel pulse ()
e PM spike at end due to rapid transition back to zero EGR (A)
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LTC-based regeneration produces very low PM
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Integration of reductant produced shows similar total

mole count for LTC case
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e Previous data indicates that H, production dictates efficiency (SAE 2004-01-3023)
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LTC strategy has potential for lower overall fuel penalty,
despite lower average NOx conversion
Strategies not optimized for FEP, NOx, torque, etc.
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Further study attempting to leverage the LTC
regeneration’s superior fuel specific NOx reduction

o Comparing the benefits of improving LTC regeneration
(lowest fuel penalty) vs. improving DEM regeneration (best
NRE)

e Revised experiment to improve assessment of regeneration
fuel penalty
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Preliminary results from attempts to increase NOx
Reduction Efficiency while maintaining low fuel penalty
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Preliminary results from attempts to increase NOx
Reduction Efficiency while maintaining low fuel penalty
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Preliminary results from attempts to increase NOx
Reduction Efficiency while maintaining low fuel penalty
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Summary - Preliminary LTC Regeneration Strategy Has
Many Benefits

e LTC regeneration produces PM levels less than typical lean/EGR
operation, and considerably less than DEM

e Low fuel consumption for LTC regeneration yields superior Fuel
Specific NOx Reduction

— Increasing frequency and duration of regeneration improves NOx
reduction for LTC at minimal cost

e Preliminary data indicates potential for catalyst performance
equivalent to DEM and P80, but with 5x-10x more efficient fuel
utilization

— potential for improving NOx conversion, fuel efficiency, PM generation,
and torque smoothing with further effort
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