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MHD SI EtOH Program Background

� Investigate conversion of an existing diesel engine to EtOH TDI

� Be manufacturable with minimum change to base engine

� Departure from typical tumble based pent-roof combustion system

� swirl based vertical valve bowl-in-piston combustion system

� Demonstrate the potential to meet/exceed existing MHD performance 



4Department of Energy Workshop March 3, 2010

T345; 4V; Rs=0.6
T903; 2V; Rs=1.1

E85 Full Load Curve – CR=~12:1
4-Valve Head vs 2-Valve Head
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T345; 4V; Rs=0.6
T903; 2V; Rs=1.1
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MHD Ethanol Engine Alternatives Overview
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Personal Transport Engine Alternate Fuel Family Tree
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EBS Strategy

� E85 provides significant octane benefit with DI due to 
high latent heat of vaporization and high octane rating 

� Allows knock-free operation at high CR and high BMEP 
with very high thermal efficiency

but…

� Low E85 heating value is a disadvantage

� Dual fuel strategy uses E85 DI only 
as required to eliminate knock in a 
high CR gasoline engine.

� Combines high load E85 octane 
benefit with part load gasoline 
heating value advantage 

� Provides maximum leveraging of 
available ethanol
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SI Ethanol DI Full Load Benefits - E85 vs. RON91(9.3:1)
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Background of Ethanol Reformate

Monsanto has developed a catalytic reformer which uses exhaust heat to 

convert liquid ethanol into a gaseous fuel: 

C2H5OH -> CO + H2 + CH4

Expected benefits of the gaseous reformate include: 

� Extension of the dilute limit (lean or EGR) at part load due to the presence 

of 1/3 hydrogen.

� Increased heating value via exhaust heat recovery.

� ~ 7% relative to the input ethanol.

� ~ 4% after taking into account the heat of vaporization of liquid ethanol.

� Excellent cold start characteristics.

� Reduced risk of pre-ignition compared to pure hydrogen.

� To be Published in SAE 2010-01-0621 ‘High Efficiency, Low Feedgas NOx, 

and Improved Cold Start  Enabled by Low-Temperature Ethanol Reforming’
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Lean A/F vs. Cooled EGR with Reformate
1500 rpm, 3.5 Bar NMEP 

The 0-10% burn times decreased in 

comparison to Indolene.

� Increased CR from 10:1 to 14:1.

� High swirl ratio of 2.6.

� Presence of hydrogen in reformate.

Burn times increased with the addition of 

dilution.

Increased burn times ultimately result in 

loss of engine stability (COV > 2%):

� Lambda = 2.3 or

� 36% EGR (equivalent to λ = 1.6) 
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Exhaust temperature constraint of 400°C:

� Limits A/F to ~1.8 λ

� Reduces NTE benefit from 22% to 17%.

� Increases NOx, effectively decreasing NTE 
further via LNT regeneration requirement.

EGR was used for the rest of this study.

Strategy of combined Lean A/F, EGR and internal 

residual will be studied separately. 

11% (EGR)

0.9

0.1

*Additional ~7% gained using LHV of E100.

400°C needed to maintain heat for 

TWC and reformer heat transfer.

17%


