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Primary Levers for Increasing Engine Efficiency

1) Down-sizing, down-speeding Reduces relative parasitic losses, friction
2) Throttling loss reduction Stratified DI, diesel or gasoline, can enable this.

3) Light-weighting Couples with downsizing. Are two-strokes a possibility for
some markets?

4) Thermodynamically advantageous heat release rates (i.e., more constant
volume) Limited by peak cylinder pressure and combustion noise constraints

5) Advanced thermodynamic cycles (Miller/Atkinson).
Enabled by VVT & turbos, possibly variable compression ratio.

6) Reduced heat transfer

7) Reduction of aftertreatment fuel penalty (also cost reduction: this will affect
market penetration rates)

8) Alternative fuels
9) Hybridization - links to down-sizing/down-speeding

10) Waste heat recovery

Each of these factors either impacts or is affected by combustion




Low-emission combustion does not necessarily result in
low thermal efficiency
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Low-emission combustion does not necessarily result in

low thermal efficiency

Dual-fuel studies at the University
of Wisconsin have shown indi-
cated efficiencies exceeding 55%
(Splitter, AEC Feb. 2010)
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HCCl operation in linear, free-piston
engines also offers high efficiency
potential (Van Blarigan, DOE-VT Peer
Review, May 2009)




Factors affecting brake fuel efficiency
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- Can drop drastically for low-
temperature diesel or HCCI




Light-load, low-temperature combustion often results
in low combustion efficiency

CO and UHC emissions increase
rapidly as dilution levels are in-
creased

A significant fraction of the fuel
energy can be found in these
emissions
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Light-load, low-temperature combustion often results
in low combustion efficiency
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Squish volume UHC stems from lean mixtures located
near the bowl rim at the time of HTHR
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We need both better understanding and better tools
to optimize mixture preparation for best combustion n

Causes of poor mixture distribution are subtle

A better understanding of how optimal mixtures
can be prepared, and a more accurate, validated
predictive modeling capability, are both needed




Factors affecting brake fuel efficiency

M
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Net chemical energy released

Influenced by:

« Compression ratio
(Expansion ratio)

. Specific heat ratio

- Combustion phasing and
rate of heat release

- Heat transfer losses




Compression ratio reduction is a powerful lever for
reducing TDC temperature and increasing mixing

« A 50K decrease in ambient temp-
erature reduces ¢ at the start of
low-temperature reaction by over
60%

Corresponds to:
- Reduction inT;, by 20 K
- Comp.ratio from 18.7 to 15.6

 The relative magnitudes of
chemical and mixing timescales
will change with boost and
engine speed. Down-sizing and
down-speeding can
fundamentally alter mixing
processes
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An predictive modeling capability that
accurately captures both turbulent
mixing rates and chemical kinetic rates
will be useful for optimizing new engines




Compression ratio is a first-order factor impacting the
thermodynamic efficiency
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Impact of constraints on thermal efficiency
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What about the specific heat ratio? (another first order

parameter)
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Physics gets lost in the thermody-
namic derivation

Expect that lower temperatures gen- P-MEP
erally provide a higher specific heat
ratio...and greater work extraction

per unit of volume expansion

 Percent of Fuel Energy [%]

I-MEPn

Seems to correlate with data

But low temperatures mean higher Conv. c Gas. DF

. LT
EGR rates...lowering y Diesel PPCI PCCI

. Figure from Foster, SAE Fall PF&L 2009
...and mass flows also increase

A careful analysis and mental framework characterizing the impact of all of
these factors would facilitate understanding and design optimization




Mixing-controlled low-temperature combustion modes
often suffer from retarded heat release

CO Mass Fraction

O, Mass Fraction
s o o °

Increased swirl increases
late-cycle mixing rates...

..though it also likely
increases heat losses

Rs=2.59

Bulk structures transport unburned
fuel and air to a common interface

Numerical simulations
courtesy of RD Reitz,
University of Wisconsin
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The ability to accurately predict
bulk flow structure formation and
their impact on on late-cycle
oxidation processes will be
important to the optimization of
these engines

e.g. soot oxidation in a heavy duty
engine




In HCCl combustion heat release rates can be too rapid
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- Overly rapid heat release
often limits the achievable
load for HCCI operation
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Fuel reactivity stratification offers significant potential
for taming peak heat release rates

Same Peak HTHR Location 9.6 bar IMEPg

£ OO 14
20 o NTCBSRer el
1 ——— 7@5/[@ """" Y A N
1 %003 | ’
s ERyAWS
Good results have been ob- = 100gom—J NN 110 =
tained with both reactivity % 80 i gl CARTDO) g . 1.75%DTBP ... 08 O
enhancement and reactivity = 1 i \*~90% port fuel \ S
. ® 60l . A _43%EGR . Noex=
reduction N [~
Qo ] g ; P ! :E-85: . - %
Q. 4.~ Gasoline/Diesel ~ . | ~\"78% portfuel {04 z
. 89% port fuel '\ O0%EGR i |
0, ; . . . .
7\ i S ‘W’EG ......................... \ ] 0.2
0 e S— 100

25 20 45 40 5 0 5 10 15 20 25
Crank Angle (° CA ATDC)

Splitter, AEC Feb. 2010

Can we model and correctly predict this behavior?




Reduced heat transfer also appears to be a dominant
factor related to higher efficiency
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- Higher pressures will cause greater HT-MEP
heat losses

- High EGR rates will cause additional
losses through radiative transfer from
C02 and Hzo

« Reduced radiative transfer from soot
will help

Data indicate that overall heat transfer
is reduced

Heat transfer is not fully determined by Cony
“static” thermodynamic properties (T, p) Diesel

- wisinfluenced by down-speeding

- Flow structure manipulation may
also provide a benefit
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Factors affecting brake fuel efficiency

ntnc

« Pumping work

- Direct injection, stratified

e Friction

- Downspeeding (t¢omp VS- Tengine
heat transfer)

Downsizing (wall effects, boost)

Materials

Lubricants (post-injection)

Additives

« Accessories




Wall wetting impacts piston friction forces, not just
oil sump levels

Fuel injection condition
Pcom = 130MPa, ITmain=BTDC10"
Qmain=15mm?/st., Qpost=5mm?/st.

T 1" 1200rpm- BMEP=250kPa

Fp
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Oinuma, Takuma, Koyano and Takiguchi, SAE Paper no. 2005-01-2166.

As post injection timings are retarded, wall friction
increases as the wall wetting worsens




Reduction of aftertreatment fuel penalty

One viewpoint is that low-temperature combustion techniques are essential to
meeting T2B5 and T2B2 emissions standards in a cost- and fuel-efficient manner

SULEV Diesel challenge

~85% NOXx reduction
from ECT
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Reduction of aftertreatment fuel penalty

These analyses indicate that best “system” fuel economy occurs when engine-out
emissions are minimized, despite increased engine fuel consumption

Research is now examining the optimum engine and
aftertreatment balance for best fuel economy at T2B2
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Reduction of aftertreatment fuel penalty

Others find that careful combustion/air-handling/FIE optimization can lead to
improved efficiency and lower emissions...
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Reduction of aftertreatment fuel penalty

..but that an increase in NOx aftertreatment efficiency would enable a more
efficient solution
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Summary

« Combustion impacts all of the various levers we can use to increase fuel effi-
ciency

- Combustion either directly or indirectly impacts all of the efficiency components
impacting BTE

- There is a need for a true systems level approach to the efficiency problem:
Combustion and aftertreatment and air handling

Part of the systems approach is a need for clear communication of boundary
conditions and constraints: Engine load speed map? Max cylinder pressure? Ex-
haust gas temperature and composition?

Is there room for a coordinating body or committee?

- Sacrificing engine efficiency for criteria emissions is unacceptable and is not nec-
essarily required. We have made significant progress understanding sources of
inefficiency in LTC, but considerable work needs to be done to understand how
to best eliminate them



Program elements

A program aimed at increasing engine efficiency will have two
essential components:

1) Development of a truly predictive modeling capability on multiple levels

- Detailed multi-dimensional simulations

- Low-order models for system optimization

2) Development of a framework for understanding important
thermodynamic trade-offs, on a system and on a component level

The designer needs guidance!



